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Figure 10. Comparison of dimension mixing ability of a non-tempered
McMC chain (upper) and Parallel Tempering(lower) for trans-dimensional
receiver function sampling. The y-axis in both cases is the number of layers
in a McMC run (upper panel) and PT run (lower panel), while the x-axis is the
chain step. The non-tempered chain makes only 10 changes in the number
of layers, whereas the tempered chain makes about an order of magnitude
more transitions in this window. In this test both chains are initiated at the
same best data fit model found by the Parallel Tempering algorithm solution
shown in Fig. 9.

indicated by a series of dotted lines in the upper panel of Fig. 12(a).
As can be seen, receiver functions depend on at most two control
models, while each control model influences between four and five
receiver functions. From left to right the control models form a 2-D
profile containing several dipping layers in shear wave velocity. The
combined effect is a multimodal optimization problem for structural
and data noise parameters.

Here, the dimension is fixed and we minimize the likelihood func-
tion only. Another simplification from the earlier sampling problem
is that we solve for the noise parameter σ by setting its value to the
ML estimate throughout, that is, we find σ in (17) which maximizes

Figure 11. Probability transition matrix between 16 temperature bins for
all 380 chains of the Parallel Tempering algorithm in the receiver func-
tion example. Temperature bins span T = 1–50 and are log-uniformly dis-
tributed. Warmer colours indicate higher rates of successful transitions be-
tween chains in corresponding bins. Successful jumps are seen to occur
between chains at similar temperatures and off-diagonal elements increase
in size with temperature indicating significant, and desirable, mixing of the
chains across multiple temperature levels.

(16). It can be shown (see Appendix B) that the ML estimate of σ

is

σ (m) =
[

1

N
rT C̃−1

d r

]1/2

, (19)

where the residual vector, r = d − dp(m) and data vector d is a
concatenation of the 18 receiver functions, Fig. 12(b), and dp(m)
are the corresponding predictions from the model m. Substitution
of (19) into (16) and dropping additive constants gives a modi-
fied −log-likelihood (data misfit) expression which is independent
of the noise parameter σ

− log p(d|m) = N

2
log

(
rT C̃−1

d r
)
. (20)

For details see Appendix B. This can be a useful substitution for
many inverse problems where data variances are poorly known.
For our test problem, it reduces the dimension of the parameter
space while automatically solving for the noise parameter during
the optimization. Previously this approach has been used by Dosso
& Wilmut (2006) to good effect for non-linear inverse problems in
ocean acoustics (see also Dosso et al. 2012).

Parameters of the six control models are sought which minimize
misfit between the 18 observed and predicted receiver functions
simultaneously, by optimization of (20). Results from our PT algo-
rithm are displayed in Figs 13 and 14. Here, as before, we make use
of 380 McMC chains with a temperature ladder spanning 1.0 ≤ T ≤
50, and 95 chains fixed at T = 1. Each chain is initiated at a random
velocity model calculated from uniform random variables in the
range 0 km ≤ ci ≤ 60 km for each depth node and 2.0 km s−1 ≤
Vs, i ≤ 5.0 km s−1 for each velocity parameter. These are quite wide
bounds and hence initial models in each chain are typically very
poor fits to the data.

Within-chain steps were performed with the same McMC algo-
rithm used in previous experiments. Exchange swaps were proposed
uniform randomly between all pairs of temperature levels. Fig. 13
shows three curves of the data misfit as a function of chain step. The
solid ‘staircase’ curve is the lowest value of the −log-likelihood ac-
cording to expression (20) as a function of chain step; the thick black
line is the average value over the cold chains and the grey curve is
the average over chains with temperatures in the range 1.5 ≤ T ≤
2.5. Note that due to the form of (20) values of −log-likelihood can
become negative when data residuals, r, are small. Fig. 13 shows
that while the optimum model is largely converged after 25 per cent
of the steps, the ensemble of models at T = 1 show some statistical
fluctuations and continue to reduce throughout. As expected, mod-
els at higher temperature have notably slower convergence due to
the tempered Markov chain being more explorative.

Fig. 14(a) shows best fit solutions found for the six control mod-
els (solid curves) together with the true solutions (dashed), while
Fig. 14(b) contains a comparison of the corresponding predicted
and original receiver functions. All synthetic data is fit very well in
this case and the recovered models are close to true values. Given
that the true model is unlikely to be at the global minimum of the
objective function (20) due to added noise, the fit is sufficiently
good to conclude that the algorithm has found the global solution.
Overall, this example shows that PT is able to optimize complicated
multimodal functions.

4 D I S C U S S I O N

The results of experiments presented here indicate that exchange
swaps between tempered McMC chains is an effective mechanism
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Figure 12. (a) 2-D profile of the laterally varying wave speed model used in the optimization test. The six 1-D control models are shown as a function of
position. Velocity values and interface positions vary linearly along the profile between control models. The velocity axis applies to the first model only.
Depth range is not to the full extent of the model. Locations of 18 receivers are represented by dots at zero depth. (b) Synthetic receiver functions with added
noise calculated at the 18 receiver locations. Each receiver function is calculated from the 1-D model beneath its location, which is determined through linear
interpolation of neighbouring control models. The interdependence of earth models and receiver functions is indicated by horizontal bars in the panel above
part (a).

Figure 13. Convergence of negative log-likelihood as a function of chain
step for the PT algorithm. The solid (staircase) curve is the lowest data
misfit across all chains. The black line is the average data misfit across the
95 chains at the lowest temperature (T = 1). The grey line is the average data
misfit across chains in temperature bins 2–4, corresponding to temperatures
1.5 ≤ T ≤ 2.5. The optimum model converges by 5 × 105 steps, whereas,
as expected, the convergence rates of the ensembles are ordered inversely
with temperature because higher temperatures are more explorative of the
parameter space.

for increasing efficiency in sampling algorithms, as well as a novel
approach to global optimization. Several numerical examples are
presented to illustrate the central idea. These are intended to be
illustrative. In particular, it is not argued that PT should necessarily
replace alternate approaches for the inversion of receiver functions.

Convergence can often be achieved for this problem with existing
trans-dimensional McMC samplers, as proposed by Bodin et al.
(2012b), provided they are run for long enough. The intention here
is to demonstrate the potential of PT in optimization and sampling
of multimodal functions and thereby encourage further applications
to geoscience problems.

An interesting feature of PT is that it is in essence a ‘meta’-
algorithm, in that it incorporates a McMC sampler at its cen-
tre, but is not dependent on any details of that algorithm. This
is clearly demonstrated in the pseudo-code representation of the
algorithm shown in Appendix C. PT can be applied to fixed or
trans-dimensional within-chain sampling, use any form of model
perturbation or indeed any form of model parametrization. The
exchange-swapping process merely requires multiple chains to ex-
ist that are swapped in pairs using the corresponding Metropolis–
Hastings rule (11). This has considerable advantages in software
construction because libraries can be written that make no assump-
tion about the nature of the parameter space. Real, integer or com-
binatorial unknowns can be treated equally well. Furthermore, it
is always possible to apply an exchange-swapping process to any
existing McMC sampler, and hence investment in refining such al-
gorithms for a particular problem is not lost. The generality of PT
is an appealing feature.

While we argue that PT may be used to accelerate convergence
of McMC algorithms, many other techniques exist which have the
same goal. An area of much current focus is the choice of proposal
distribution used for the within-chain sampling. This decision has
been shown to have considerable effect on convergence rates of
McMC algorithms (Dosso & Wilmut 2006). In our experiments,
there is a single structural parameter per layer and so a 1-D pro-
posal Gaussian distribution is used to perturb layers independently.
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Figure 14. (a) Maximum likelihood solution for the six 1-D control models found by the PT algorithm. Recovered models are solid and are an excellent fit to
the original profiles (dashed). (b) Predicted (solid) and original (dashed) receiver functions, showing all major features fit to a high level. All other details are
as in Fig. 12.

Alternate proposal distributions include multidimensional Gaus-
sians based on linearized a posteriori model covariances (Malin-
verno 2002; Dosso & Wilmut 2006; Minsley 2011) and those which
dynamically detect the local scale and shape of the target distribution
during the random walk. Examples of which are delayed rejection
(Tierney & Mira 1999; Mira 2001; Haario et al. 2006), ‘multiple
try’ or ‘snooker’ moves which utilize the entire history of ensemble
to create model perturbations (Laloy & Vrugt 2012), and schemes
suited to cases where the target PDF may be approximated as a
mixture of Gaussians (Craiu et al. 2009; Bai et al. 2011). The fo-
cus of this paper, however, is on the effect of introducing exchange
swaps into the ensemble and not the nature of the proposal dis-
tribution itself. As noted above, PT is independent of the choice
of within-chain sampler and hence these adaptive proposal distri-
butions could be used together with a tempering framework. For
example, it would make sense to make the within-chain proposal
distributions a function of temperature of the chain, something not
done in our experiments, so that higher temperature chains tend to
propose larger steps in model space while lower temperature chains
propose smaller steps.

In optimization, PT is widely applicable. For example, it could
be applied to any problem where, say SA is used, thereby taking
advantage of the same central Markov chain approach but with par-
allel exchange swaps present and governed by the acceptance rule
(12). More generally, one could imagine applying exchange swaps
to any existing numerical algorithm (not just an McMC sampler),
which sampled, or optimized, tempered probability distributions in
the form of (3) or (1), respectively. In this way, PT could be general-
ized for use with other direct search optimization methods, however,
this aspect does not appear to have been explored to date.

The retention of ‘detailed balance’ in PT, which keeps the swap-
ping process in equilibrium, is in principle an advantage over SA.
However, this does not mean that PT will always outperform SA
or ST in any particular application. There are many examples
of successful applications of SA to optimization problems in the
geosciences, where the lack of equilibrium in the Markov chain
as temperatures are reduced is not seriously detrimental to perfor-
mance. However, in general, too rapid a cooling is known to cause
disequilibrium in SA, with entrapment in secondary minima the

likely result (Aarts & Korst 1989). PT offers an alternate in these
cases.

While we have presented five separate numerical examples show-
ing applications of PT in various situations, these are clearly not
exhaustive. For example, we have not provided numerical exam-
ples comparing PT with alternate approaches for parameter search
and optimization, which is beyond the scope of this paper. In ad-
dition to SA and ST, another search algorithm which has found
several applications in the geosciences is the neighbourhood algo-
rithm (NA) of Sambridge (1999). In this case a few comments are
possible. Specifically, NA, like PT, is an ensemble-based parameter
search technique, but one which is restricted to real-valued param-
eter spaces of fixed dimension. NA has the property of being driven
only by a ranking of models in parameter space according to an
objective function. Since a change of temperature as shown in (1)
does not change the rank of models in an ensemble, then NA is un-
affected by tempering. A second observation is that NA has largely
found success in problems where the numbers of unknowns is rela-
tively small, say less than 50. PT, on the other hand, may be applied
to any problem where SA can be used, and there are applications
across the sciences where these run to the hundreds to thousands
of unknowns (Sen & Stoffa 2013). The NA and tempering do not
appear to be readily combined and one might expect the latter to
find application in a broader class of problems.

The central aim of this paper has been to show how the effi-
ciency of randomized sampling is improved through tempering of
probability distributions, (3) and (1). Taking a broader view, we can
recognize that tempering is in essence just one way of replacing
a difficult multimodal sampling, or optimization problem, with a
series of less difficult versions. In the author’s view, this might be a
principal with general applicability for non-linear inverse problems.
For example, if it is possible to replace a single difficult problem
with a family of related versions of the problem with decreasing
complexity, then considering them in unison may pay benefits. For
example, in parameter search and sampling, solutions to simplified
cases can provide useful starting points for more complex prob-
lems. The key feature of PT is that all such problems are tackled
at once with information continually exchanging between random
pairs.
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5 C O N C LU S I O N

A discussion of algorithms to sample-tempered PDFs is presented.
Certain multimodal optimization and probabilistic sampling prob-
lems common in geophysical treatments of inverse problems may be
addressed by sampling an augmented model space consisting of the
original model parameters and an additional temperature variable.
The technique known as PT is described and illustrated through
several numerical examples. A key element of this approach is the
use of exchange swaps between pairs of Markov chains each sam-
pling a tempered version of the target probability distribution. These
allow sampling of the augmented parameter space while retaining
detailed balance and hence convergence to stationary distributions
(and global minima). A practical solution is proposed to the ques-
tion of how to define a temperature ladder upon which PT may be
performed, which requires some adjustments to the standard version
of the algorithm, to allow transitions between arbitrary, rather than
adjacent temperature levels. Results of numerical tests suggest that
inclusion of exchange swaps provides significant benefits in terms
of acceleration of convergence of Markov chain samplers. Since the
tempering framework is independent of the choice of McMC algo-
rithm used to sample the parameter space, it may be combined with
the most appropriate sampling algorithm for any given problem.
The results here provide encouragement for future applications of
PT more broadly within the geosciences, which to date have been
almost entirely absent.
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A P P E N D I X A : M E T RO P O L I S – H A S T I N G S
S A M P L E R S

A1 Within-chain sampling

A Markov chain Monte Carlo algorithm is a method for drawing
random samples of a multidimensional parameter vector, x, from
an arbitrary normalized target probability density distribution, π (x).
An up to date discussion of McMC samplers as well as much of
the recent research in the area can be found in Brooks et al. (2011).
Here, we provide a brief summary of the main elements. An McMC
algorithm starts at an initial point, x0 and generates a new dependent
vector x1 using a Metropolis–Hastings (M-H) sampler.

The M-H sampler consists of two steps: the first is to generate a
proposed new random vector x′ and the second is to decide whether
to accept or reject it. If accepted the chain moves to x′, if rejected it
stays at its original position x. In the first step, the random vector x′

is drawn from the distribution q(x′|x). Here, it is assumed that some
method is available to do this. An example is a multidimensional
Gaussian distribution centred on x for which convenient algorithms
exist (see Press et al. 1992):

q(x′|x) = 1√
(2π )N |�| exp

{−1/2(x′ − x)T �−1(x′ − x)
}
. (A1)

Having drawn the new vector x′, this is accepted with probability
α(x′|x). To ensure convergence to the target PDF, π (x), the M-H
rule is used to determine the acceptance probability

α(x′|x) = 1 ∧
{

π (x′)q(x|x′)
π (x)q(x′|x)

|J |
}

, (A2)

where |J| is the determinant of the Jacobian between the space in
which x and x′ lies. Typically, these are the same space and so |J| = 1.
The distribution q(x|x′) is the proposal probability for the reverse
step from x′ to x, and since often this is symmetrical as in (A1)
the proposal ratio cancels. Markov chains that involve transitions
between dimension can be dealt with in the same way, only here the
Jacobian may not always be unity (see Hopcroft et al. 2007; Bodin
et al. 2012a,b, for examples).

After many steps of the M-H sampler, the Markov chain formed
in this way has the history xi (i = 1, . . . ), and provided (A2)
is satisfied, the distribution will converge to the target π (x). In
practice, one has to collect a subset of the samples in the chain by
ignoring the initial vectors generated in the ‘burn-in’ phase, because
these are dependent on the initial model, and also ‘thin the chain’
by keeping only every nth sample, thereby reducing correlation
between vectors. The within-chain sampling used in all algorithms
described in this paper follow this structure.

A2 Acceptance rule for an exchange swap

In parallel tempering exchange swaps occur between a pair of levels
in a temperature ladder, and, in this case, the vector x describes the
joint system of model vectors at all levels of the ladder, x = [mi],
(i = 1, . . . , n), where mi is the state of the model vector in chain i.
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The target PDF, π (x), then becomes the joint distribution over all
chains

π (x) =
n∏

i=1

p̃(mi |d)1/Ti

c(Ti )
, (A3)

where c(Ti) are normalizing constants

c(Ti ) =
∫

p̃(m|d)1/Ti dm. (A4)

In an exchange swap, the model vectors of only two chains alter,
all others are kept constant. For an exchange between models mi

at temperature Ti and mj at Tj, the state of the system prior to
swap is x = [mi, mj] and after is x′ = [mj, mi]. For simplicity of
notation, we drop variables at all other temperature levels as they
are unchanged by the swap. In an exchange swap, the proposal
probability is symmetric (q(x′|x) = q(x|x′)) and Jacobian equal to
unity, and so combining this information and substituting (A3) into
(A2), the M-H rule for calculating the acceptance probability for
this type of transition becomes

α(i, j) = 1 ∧
{

p̃(mi |d)1/Tj c(Ti )

p̃(mi |d)1/Ti c(Tj )
× p̃(m j |d)1/Ti c(Tj )

p̃(m j |d)1/Tj c(Ti )

}
, (A5)

which is eq. (10) of the main text and simplifies to

α(i, j) = 1 ∧
[

p̃(m j |d)

p̃(mi |d)

]1/Ti
[

p̃(mi |d)

p̃(m j |d)

]1/Tj

, (A6)

which is eq. (11) of the main text.

A3 Acceptance rule for optimization

We aim to show that for an optimization problem that the general
M-H rule (A2) is equivalent to (12). In this case, the model vector
x is the same as for sampling above and so the corresponding
normalized target PDF becomes

π (x) =
n∏

i=1

e−φ(mi )/Ti

c(Ti )
, (A7)

where now the normalizing constants are

c(Ti ) =
∫

e−φ(mi )/Ti dmi . (A8)

As before, exchange swaps occur between models mi at temperature
Ti and mj at Tj, and the state of the joint system moves from x = [mi,
mj] to x′ = [mj, mi]. Substituting (A7) into (A2) gives

α(i, j) = 1 ∧
{

e−φ(mi )/Tj

e−φ(mi )/Ti
× e−φ(m j )/Ti

e−φ(m j )/Tj
× c(Ti )c(Tj )

c(Tj )c(Ti )

}
, (A9)

which reduces to

α(i, j) = 1 ∧ exp
{
(1/Ti − 1/Tj )(φ(mi ) − φ(m j )

}
, (A10)

and this is eq. (12) of the main text.

A P P E N D I X B : M A X I M U M L I K E L I H O O D
E S T I M AT I O N O F N O I S E PA R A M E T E R S

By substituting (17) into the general likelihood expression (16), we
get an expression for the likelihood which depends on the unknown
variance, σ 2, and the assumed known data correlation matrix, C̃d ,

p(d|m) = 1√
(2π )N σ 2N |C̃d |

exp

{
− 1

2σ 2
rT C̃−1

d r

}
, (B1)

where the residual vector r = d − dp(m). In situations where the data
noise σ is not known, it can be solved for together with the model m,
either in a Bayesian framework (as in Bodin et al. 2012a), or using
a maximum likelihood approach as shown here. In particular, we
follow Dosso et al. (2012) and find the value of σ which maximizes
(B1). To simplify algebra, we first take logs of (B1) which gives

− log p(d|m)= N log σ + 1

2σ 2
rT C̃−1

d r+ 1

2
log[(2π )N |C̃d |]. (B2)

An optimal value for σ is found by differentiating (B2) with respect
to σ and setting to zero

∂

∂σ
[− log p(d|m)] = N

σ
− 1

σ 3
rT C̃−1

d r = 0, (B3)

⇒ σ 2 = 1

N
rT C̃−1

d r, (B4)

⇒ σ =
[

1

N
rT C̃−1

d r

]1/2

, (σ > 0), (B5)

which is eq. (19) of the main text. To find the modified likelihood
expression, we substitute this expression for σ into (B2) and get

− log p(d|m) = N log

[
1

N
rT C̃−1

d r

]1/2

+ N

2
+ 1

2
log[(2π )N |C̃d |], (B6)

⇒ − log p(d|m) = N

2
log

(
rT C̃−1

d r
)

+
{

N

2
(1 − log N ) + 1

2
log[(2π )N |C̃d |]

}
.

(B7)

The term in curly brackets does not depend on the residual vector r
and so we write

− log p(d|m) = N

2
log

(
rT C̃−1

d r
) + Const, (B8)

which gives

p(d|m) ∝ exp

{
− N

2
log

(
rT C̃−1

d r
)}

, (B9)

which is eq. (20) of the main text. Note that (B9) can also be written
as

p(d|m) ∝ (
rT C̃−1

d r
)−N/2

. (B10)

A P P E N D I X C : PA R A L L E L T E M P E R I N G
P S E U D O - C O D E

The pseudo-code below shows the basic structure of a Parallel Tem-
pering algorithm. Upon initialization, the n-vector T contains the
preset temperatures of the n chains, m is the number of within-chain
steps and nb is the number of within-chain burn-in steps executed be-
fore results are collected. The user-supplied routine ‘AdvanceChain’
performs within-chain McMC sampling by updating the model in
the ith temperature level over the j time step and returns the updated
value of the target PDF, π i, j. This routine also stores any results
along the chain in a form suitable for the parameter space. The
function U(a, b) represents a random draw from a uniform PDF
between a and b. The pseudo-code shows that the PT routine is
independent of both the details of the McMC sampler and also the
dimension and nature of the parameter space.

 at U
niverzita K

arlova v Praze on Septem
ber 10, 2015

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


374 M. Sambridge

Algorithm 1 Exchange swapping McMC chains in a tempered space
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