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Preface

Originally, the theme of my master thesis was “Gaussian packet depth migration”.
However, it has not been a goal, but rather a direction of my work in the past two
years. The final algorithm of the Gaussian packet migration should consist of four
parts:

(a) preparation of a suitable velocity model,

(b) optimization of the shape of Gaussian packets,

(c) decomposition of the wave field into Gaussian packets and

(d) composition of the migrated depth section.

First of all, we have tried to prepare an optimum velocity model by smoothing the
Marmousi model. This is described in the first part of this thesis. Since the width
of the Gaussian beam is equal to the width of the corresponding symmetric Gaussian
packets, and the computation of the beams is easier, we study the width of Gaussian
beams. Due to the low frequencies under consideretion, we have found the Gaussian
beam method at the verge of acceptability even in models sufficiently smoothed for ray
tracing.

Then, we have tried to overcome this difficulty by optimization of the shape of
Gaussian beams by evaluating the optimum initial parameters of Gaussian beams. This
is described in the second part of this thesis. By the term “optimum” we mean such
initial parameters, which keep the minimum width of Gaussian beams along the whole
ray path.

As you can see, we are in the middle of the way. Thus, it is very hard to judge, how
succesfully we have solved the first two parts of the whole algorithm of the Gaussian
packet migration. However, we believe that presented methods are enough flexible to
deal not only with the Gaussian packet migration, but with various problems from a
challenging world of seismology.



qguadratic term in the Taylor expansion of the complex-valued travel time of the Gaussian
beam thus reads 1
EMq2 ; (20)
The quadratic term in the Taylor expansion of the complex-valued travel time of the
Gaussian beam along the surface is

%(GR+iGI)(X X0)? ; (21)

where (X Xg) is the distance from the initial point of the central ray of the Gaussian
beam to the respective point on the surface and G® and G are real-valued parameters
determining M uniquely (Klimes 1984).

We have calculated the standard halfwidths of Gaussian beams in various smoothed
models for various initial values of parameters G® and G'. Standard halfwidth a of a
Gaussian beam of crossection )

q :
2a2 ’
multiplied by the square root of (2 f), has been interpolated between the rays and
displayed,

exp (22)

W = apﬁ : (23)

The halfwidths of Gaussian beams calculated for the models with the B-spline grid
of cells of 200 400 metres and with s = 15309m?2, s = 30619m?, s = 61237m? and
s = 137784m? are shown in Figure 6. These halfwidths have been calculated for the
initial values of parameters G® = 0 and G! = 0:250 10 ®. The models with lower
values of s were excluded.

The colour coded quantity W is displayed at the respective points along the central
rays of the beams. The yellow colour corresponds to the Gaussian beam halfwidth of 0
metres for all frequencies. The green colour corresponds to the Gaussian beam halfwidth
of 202 and 378 metres for the frequencies of 35 Hz and 10 Hz, respectively. The red
colour corresponds to the Gaussian beam halfwidths of 1010 metres and more for the
frequency of 35Hz, and of 1890 metres and more for the frequency of 10Hz. Thus, the
red coloured regions of Figure 6 indicate too wide Gaussian beams for the frequencies
under consideration

We can see that the model with s = 15309m? is not suitable for Gaussian beams
or packets. Especially if the position of the source is close to the middle of the pro le,
the Gaussian beams become wider too quickly. On the other hand, the models with
s = 61237m? and s = 137784m? seem to be acceptable. Unfortunately, these models
are smoothed to an extent which may jeopardize the migration. We hope that we
will be able to use the model with s = 30619m? in the migration. We have studied the
behaviour of Gaussian beams for various initial parameters G® and G'. We have realized
that di erent initial values of these parameters are suitable for di erent positions of the
source, or of the receiver in the migration. In future, we will try to develop a method
to optimize the shapes of Gaussian beams or packets in dependence on the position of
the source, or of the receiver in the migration. This would allow the use of models not
S0 smoothed.

Let us mention that even in models with a su ciently small number of arrivals, the
widths of Gaussian beams are at the verge of acceptability. This is caused by the low
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frequencies under consideration.

Let us summarize that models with parameter s equal to or greater than 15309m?
seem to be suitable for ray tracing with the travel time of 2:3 seconds, see Figure 5
and 6. From this point of view, these models are su ciently smooth. However, the low
frequencies under consideration make the use of the Gaussian beam or packet method
almost impossible. We should probably improve the applicability of the Gaussian packet
method by using shapes of Gaussian packets optimized in dependence on the position
of the source, or of the receiver in the migration.

9 Conclusions

The minimization of the relevant Sobolev norm of slowness is a powerful tool for prepar-
ing the optimum models for the asymptotic ray theory methods. As we have illustrated
in numerical examples, it can be used for smoothing very complex models. However,
the di erence of slowness between the smoothed and the original model then increases
rapidly. Also, the error of the travel time then increases.

We must keep in mind that there exists a natural relation between the complexity
of the original model and the resulting di erence between the su ciently smoothed
model and the original model. The more complex the original model, the more change
it requires. Thus, the decision is up to the user, whether or not the model is too complex
for smoothing. The required maximum error of travel time is then a key argument.

We have also demonstrated that even in models su ciently smoothed for ray trac-
ing, the Gaussian beams may still be too wide for the frequencies under consideration.
In preparing a model for Gaussian beams or packets, we cannot judge solely from the
number of arrivals and values of the \average Lyapunov exponents’, whether the model
is convenient. The widths of Gaussian beams or packets in relation to the frequency
should be studied as well.
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Appendix A

In evaluating a meaningful initial value of parameter s (see Section 6), we need to nd
some approximative relation between the Sobolev norm and the Lyapunov exponent.

According to Klimes (1999), the \average Lyapunov exponent" b may be approxi-
mated by

b+ ; (A 1)
where is the decompensation for the low-velocity focusing zones. In 2-D, isde ned
as 7 7

1£.q
= v ld’x neg(v.ijeiej)v 1d*x ; (A 2)

where neg(f) = 3(f  jfj) is the negative part of f, v is the velocity, v.jj is the second
velocity derivative and e is a unit vector perpendicular to the ray.

We assume that the model is so smooth that the number of velocity oscillations,
Kose, along rays of length corresponding to ., is small,

I<OSC = o 7 (A 3)

OscC

where 4. iIs the average wavelength of the velocity oscillations in the smoothed model,
expressed in travel-time units. This assumption allows for the approximation

N2~ Koeln2

OoSscC max
Let us now perform several approximations to express in terms of the Sobolev norm
of slowness u in the model without interfaces,
z 1Z g
ud3x pos(u.jjeiej)u 1d*x (A 5)

(A 4)

where pos(f) = 1 (f + jfj) is the positive part of f,

14, ) 12— )
5 uz d°x juijeigjjdox (A 6)
and 1 (5 7 )%
§UA§ d?x (U;ijeiEj)2d2X ; (A7
where
Cz 'z )z
Ua = d?x uz d2x ; (A 8)
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Finally, we arrive at

1 3 TPp_
5Ua® g juj (A 9)

where juj is the Sobolev norm of slowness given by matrix b’, see equation (17). This

approximation may also be expressed as
r_

Ui JuA@ ) (A 10)
As we need to nd some initial value of parameter s, we should estimate the respective
value of the Sobolev norm juj;.i;. Since we have already derived an approximative
relation between juj and , see equation (A 10), we need to nd the value of ;,;;. We
have decided to keep the number of arrivals less than 10, see Section 5. With a view to
equations (14), (A 1) and (A 4),

IN10 + K s.In2

NIw

(A 11)

max

Since we assume at least one shift of In2 for the source and one for the receiver, we
assume Ky = 2. For .« = 2:9 s, we can put

init 1:3s Lo (A 12)
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